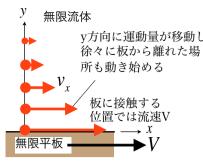
基礎方程式
$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = v \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) - \frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{F_x}{\rho}$$



この無限平板が突然速度Vで動き出す。 その後一定の速度Vで動き続ける。

無限流体中の無限平板が
$$x$$
方 $v_y = v_z = 0$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} = 0$

よって、解くべき式は
$$\frac{\partial v_x}{\partial t} = v \frac{\partial^2 v_x}{\partial x^2}$$
 初期条件 $v_x = 0$ at $t = 0$ 境界条件 $v_x = V$ at $y = 0$ $v_x = 0$ at $v_x = 0$

この方程式はこのままでは解けない。なんとか常微分方程式に持ち込みたい。変数が2つあるから偏微分になる訳で、2つの変数を組み合わせて1つにしたら良いのではないか? しかしどのような合成変数が良いのか? $\eta = y\sqrt{t}$ とかで良いのか? これではダメだな・・・ とか考えるよりも、ラプラス変換法で解を既に求めていたのでは?ということでラプラス変換法での解を利用する。

$$\frac{v_x}{V} = \mathrm{erfc}\left(\frac{y}{2\sqrt{vt}}\right)$$
 この解の関数:余語差関数のArgumentは $\frac{y}{2\sqrt{vt}}$ でこれを合成変数とすればいいのでは合成変数 η を $\eta = \frac{y}{2\sqrt{vt}}$ とし、求めるべき解もラプラス変換法の解からヒントを得て、 $\frac{v_x}{V} = \phi(\eta)$ とする。

与えられた方程式から $\phi(\eta)$ に関する常微分方程式と境界条件 を導き,それを解いて,最終的に元に戻せば解にたどり着く。 $v_x = V\phi(\frac{y}{2\sqrt{yt}})$ $\frac{\phi \text{ it erfc od?}}{\delta \sqrt{s}}$ ということだが,ここでは $\delta \sqrt{s}$ を引きたるの解き方で求める。

まず与えられた方程式に $v_{_x}$ = $V\phi(\eta)$ を代入する。 $\phi(\eta)$ の微分は ϕ をまず η で常微分して, η の偏微分を乗じる

右辺(まず1階微分)
$$\frac{\partial v_x}{\partial y} = V \frac{d\phi}{d\eta} \frac{\partial \eta}{\partial y} = V \phi' \frac{1}{2\sqrt{vt}}$$
 (2階微分)も同様に考えて $\frac{\partial^2 v_x}{\partial y^2} = V \phi'' \frac{1}{4vt}$ 初期条件と境界条件も合成され2つになっている。

与式に代入 $-V\phi'\eta\frac{1}{2t}=vV\phi''\frac{1}{4vt}$ \rightarrow $\phi''=-2\eta\phi'$ ここにきて、 ϕ と η の方程式になって $\phi=1$ at $\eta=0$ $\phi=0$ at $\eta=\infty$

$$\phi'' = \frac{d\phi'}{d\eta}$$
 より $\frac{d\phi'}{\phi'} = -2\eta d\eta$ $\rightarrow d \ln \phi' = -2\eta d\eta$ $\stackrel{\text{積分}}{\rightarrow}$ $\ln \phi' = -\eta^2 + A'$ $\stackrel{\text{整理して}}{\rightarrow} \phi' = Ae^{-\eta^2}$

 $e^{-\eta^2}$ の積分は explicit には求められないので解を $\phi = A \int e^{-\eta^2} d\eta + B$ とする。

このままでは境界条件を利用できないので $e^{-\eta^2}$ を積分した原始関数を $E(\eta)$ とする。 $\phi(\eta) = A \int_0^\eta e^{-\eta^2} d\eta' + B$ の境界条件が設定されているので, $\phi = A\{E(\eta) - E(0)\} + B$ として

$$\phi = 1 \text{ at } \eta = 0 \quad \text{if } 1 = A \int_0^0 e^{-\eta^{-2}} d\eta' + B = B \quad \to \phi(\eta) = A \int_0^\eta e^{-\eta^{-2}} d\eta' + 1$$

$$\phi = 0 \text{ at } \eta = \infty \quad \text{if } 0 = A \int_0^\infty e^{-\eta^{-2}} d\eta' + 1 = A \frac{\sqrt{\pi}}{2} + 1 \quad \to A = -\frac{2}{\sqrt{\pi}}$$

最終的に
$$\phi(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-\eta^{-2}} d\eta' \longrightarrow \phi(\eta) = \operatorname{erfc}(\eta)$$
 変数を元に戻して
$$\frac{v_x}{V} = \operatorname{erfc}\left(\frac{y}{2\sqrt{vt}}\right)$$

$$\operatorname{erfc}(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-\eta^{-2}} d\eta'$$